EXPLORING MOLECULAR STRUCTURES USING AVOGADRO : BEYOND SIMPLE MOLECULES

Different classes of molecules to be investigated:

- Alkanes
- Alkenes
- Cyclic molecules
- Aromatics
- Isomers
- Amphiphiles
- Polymers

Alkanes are compounds that consist only of carbon and hydrogen atoms with the general formula : C_nH_{2n+2}

- The simplest alkane is **methane** (CH₄)
- Subsequent members of the series are:
 - > Ethane (C_2H_6)
 - > Propane (C_3H_8)
 - > Butane (C_4H_{10}) ... and so on.
- They are also referred to as saturated hydrocarbons (consist of only single bonds).
- Bond lengths are 1.09Å for a C-H bond and 1.54Å for a C-C bond.
- They are obtained as byproducts from the oil and natural gas industry.

ALKENES

- Alkenes are chemical compounds that consist of at least one carbon-carbon double bond (unsaturated hydrocarbon).
- They form a homologous series with the general formula : $C_{n}H_{2n}$
- The simplest alkene is ethene (C₂H₄)
- Subsequent members of the series are:
 - > Propene (C_3H_6)
 - > 1-Butene (C_4H_8)
 - > 1-Pentene (C_5H_{10}) ... and so on.

- Bond lengths are 1.09Å for a C-H bond, 1.54Å for a C-C single bond and 1.33Å for a C=C double bond.
- The double bond is almost 1.75 times stronger than a single bond.

CYCLIC MOLECULES

- Cyclic compounds are those that have a series of atoms that are connected by bonds to form a ring.
- Alkanes and alkenes can also form cyclic structures. For example cyclopentane, cyclohexane, benzene, etc.
- Simple cyclic compounds have one ring structure whereas more complex ones can have many rings (polycyclic compounds).

Benzene – Planar structure

AROMATIC COMPOUNDS

Aromatic compounds have certain characteristic

features:

- They have a ring structure with an alternating single and double bond arrangement.
- > All atoms in the ring are present in the same plane.
- Aromatic compounds are widely present in our body.
 DNA, RNA and some essential amino acids are all made up of aromatic compounds.
- Industrially, aromatic compounds are used as raw materials in the manufacture of a wide variety of polymers such as polystyrene and nylon.

ISOMERS

- Isomers are compounds that have the same molecular formula but different structural formula.
- For example, butane is a hydrocarbon that belongs to the alkane family and has four carbon atoms.
- Based on the structural arrangement of these carbon atoms, it is either called n-butane or isobutane (also called methylpropane).

n-butane

Isobutane

AMPHIPHILES

- Amphiphiles are molecules that have both hydrophilic (waterloving) and lipophilic (fat/oil-loving) groups.
- The hydrophobic part typically consists of a long hydrocarbon chain whereas the hydrophilic part can be either charged or polar.
- These molecules are most commonly found in soap, shampoo and detergents.
- Amphiphilic molecules that are commonly used in the manufacture of soaps and detergents are called SURFACTANTS (Surface Active Agents).
- The hydrophobic tails attach to the (oil-like) stain with the hydrophilic head groups projecting into the water.

Hydrophilic head group

POLYMERS

- Polymers are large macromolecules that are made up of a number of repeating units called monomers.
- They are broadly classified into natural and synthetic polymers. Natural polymers include DNA, rubber and cellulose whereas synthetic polymers include polyethylene, polystyrene and nylon among many others.
- Polymers can possess a wide range of properties and are omnipresent.
- They prove to be of immense interest in the field of computational chemistry and biochemistry.

- Commonly referred to as buckyballs
- Discovered in 1985 by Robert Curl, Harold Kroto and Richard Smalley.
- Belong to a class of molecules called fullerenes
- Each carbon atom is bonded to 3 other carbon atoms
- It is a polygon with 60 vertices and 32 faces
- Extremely stable at high temperatures and pressures
- Readily reacts with anionic / electron rich species
- Can trap and protect atoms and molecules that are otherwise unstable.

REFERENCES

- http://www.tundragas.com/mh2.jpg
- http://www.wolfhillgardencenter.com/Propane.jpg
- http://www.webstaurantstore.com/images/223897_lg.jpg
- http://www.morgellonscure.com/mothballs.jpg
- http://www.theexpressionist.com/2011/12/09/kims-tip-of-theweek-vo5-still-shines/
- http://img2.timeinc.net/toh/i/g/products/1009-plastic-bags/00plastic-bags.jpg
- http://truck.hownd.com/photo-1424cooper_tire_and_rubber_discoverer_ht_plus.html